Compare commits

...

5 Commits

Author SHA1 Message Date
behicof
98b968e4cc
Merge 5a3b176741 into 5b6a82d9b4 2025-06-12 10:25:23 +08:00
Lucas Valbuena
5b6a82d9b4
Update README.md 2025-06-08 14:48:19 +02:00
Lucas Valbuena
f7c76b3e72
Update README.md 2025-06-06 16:50:49 +02:00
behicof
5a3b176741 2025-05-16 00:28:06 +03:30
behicof
995158a2f2
Create makefile.yml 2025-05-10 20:57:21 -07:00
6 changed files with 134 additions and 12 deletions

View File

@ -0,0 +1,20 @@
{
"image": "mcr.microsoft.com/devcontainers/universal:2",
"customizations": {
"vscode": {
"extensions": [
"ms-vscode.azure-account",
"ms-python.python",
"ms-toolsai.jupyter",
"ms-vscode.cpptools",
"ms-azuretools.vscode-docker"
]
}
},
"settings": {
"terminal.integrated.shell.linux": "/bin/bash",
"python.pythonPath": "/usr/local/bin/python3",
"editor.formatOnSave": true
},
"postCreateCommand": "pip install -r requirements.txt"
}

27
.github/workflows/makefile.yml vendored Normal file
View File

@ -0,0 +1,27 @@
name: Makefile CI
on:
push:
branches: [ "main" ]
pull_request:
branches: [ "main" ]
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: configure
run: ./configure
- name: Install dependencies
run: make
- name: Run check
run: make check
- name: Run distcheck
run: make distcheck

View File

@ -0,0 +1,24 @@
{
"cells": [],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

6
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,6 @@
{
"DockerRun.DisableDockerrc": true,
"python.pythonPath": "/usr/local/bin/python3",
"editor.formatOnSave": true,
"terminal.integrated.shell.linux": "/bin/bash"
}

View File

@ -26,22 +26,12 @@
---
## 🗓️ **Zero Calendar (my new project)**
**An Open-Source AI-Powered Calendar for the Future of Scheduling**
Zero Calendar is an open-source AI calendar solution that gives users the power to manage their schedule intelligently while integrating with external services like Google Calendar and other calendar providers. Our goal is to modernize and improve scheduling through AI agents to truly revolutionize how we manage our time.
For more details, check out the [Zero Calendar repository](https://github.com/Zero-Calendar/zero-calendar).
---
## 🛠 **Roadmap & Feedback**
🚨 **Note:** We no longer use GitHub issues for roadmap and feedback.
Please visit [System Prompts Roadmap & Feedback](https://systemprompts.featurebase.app/) to share your suggestions and track upcoming features.
🆕 **LATEST UPDATE:** 15/05/2025
🆕 **LATEST UPDATE:** 06/06/2025
## ❤️ Support the Project
@ -66,7 +56,7 @@ Thank you for your support! 🙏
⚠️ **If you're an AI startup, make sure your data is secure.** Exposed prompts or AI models can easily become a target for hackers.
🔐 **Interested in securing your AI systems?**
Check out **[ZeroLeaks](https://0leaks.vercel.app)**, a service designed to help startups **identify and secure** leaks in system instructions, internal tools, and model configurations. **Get a free AI security audit** to ensure your AI is protected from vulnerabilities.
Check out **[ZeroLeaks](https://zeroleaks.lucknite.lol/)**, a service designed to help startups **identify and secure** leaks in system instructions, internal tools, and model configurations. **Get a free AI security audit** to ensure your AI is protected from vulnerabilities.
**The company is mine, this is NOT a 3rd party AD.*

55
Untitled.ipynb Normal file
View File

@ -0,0 +1,55 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "994f67e0-ce39-492f-bb9a-088f7885c1d6",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# Load dataset\n",
"df = pd.read_csv('data.csv')\n",
"\n",
"# Display first few rows of the dataset\n",
"df.head()\n",
"\n",
"# Summary statistics\n",
"df.describe()\n",
"\n",
"# Data visualization\n",
"plt.figure(figsize=(10, 6))\n",
"sns.histplot(df['column_name'], bins=30, kde=True)\n",
"plt.title('Distribution of Column Name')\n",
"plt.xlabel('Column Name')\n",
"plt.ylabel('Frequency')\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}